Operating Systems
Lecture |

Why Learn Operating System?
And How!?

Prof. Mengwel Xu

Goals for Today

e About this course
e What is O
* Why learn O%!

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 2

Goals for Today

 About this course
e What is OS?
* Why learn O%!?

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 3

About This Course

* Mengwei XU (fR%%) , BIEUR, BUVESID
o Office: BI#F4E 1107

* BA and PhD from PKU, joined BUPT in 2020

* Personal page: https://xumengwel.github.io/

* System Software, Edge Computing, ML Systems
* TAS:

T HrE

9/10/24 Mengwei Xu @ BUPT Fall 2024 4

About This Course

e [extbooks

« <Operating System Principles & Practice> (2"9 edition) Thomas Anderson et al

* <Operating Systems: Three Easy Pieces> (version |.10) Remzi H. Arpaci-Dusseau and
Andrea C. Arpaci-Dusseau

« <Operating System Concepts> (7" Edition) Abraham Silberschatz et al
* Slides

* Much of the contents are from lon Stoica @ Berkeley!

* Course time
* 8:00-9:35, Tuesday
e 9:50-11:25, Friday
* Materials
* There will be a website that holds everything about the course
* https://buptos.github.io/index.html
* Discipline
* Ask a question anytime, but do not disturb others from learning.

9/10/24 Mengwei Xu @ BUPT Fall 2024 5

o | B e o LT
T aelasauat ® 5% o°
u]““ 3 ..““...“ ““““.“...
o .“ -... “... “. .“ “.. ..
O "“..uuu.u...."."u geg zese eza 8 " S5mite &
2| ke o ek
I L O el IS P T P
L = S8 © 880 8 8 ssees ® (])

3 RS RO e

o “ "“ 8 “] “"...“.“. .".... -

o @ T S B U @
=

* WeChat Group

9/10/24

Ahead-of-course Questionaire

HFRENBZAERN (RPRRLE , BEHTLL , FHFFANHSZRESR)

ZITHROAET | BERRKX

Bk Lot , RE—ERERMZREME | (ERSITHIRY | BIREIRHREAE
PAEBAKIBRRE

BB EIMHBIR FR TRE[mAOMA | ZaEEX.

g labth ¥ F T REBAKHR.

ERBETFROFIKRENZES (bR N T SaiSUAFHGR) |, Eiflabritbid
BT —LEE.

RZAIFTTRARAEBRESIMRN HRMERS | Rit5KK] X DR, BEHRR
¥, BIWALIEES. (ERREEIRRRERESITNAZR | AT IEFARIRER
B, TTRES(ESRIZRMERREK.

RERASRY FRlabARTIR—LEHE—Y , SHEZMESS

ZITRILIZHE—LIRHREARNab , FMRE/N—L , IR LIES S FRMEEFSE
SRR,

BEXMRER—MEDR , PFRMERAOEE X LRRERE |, BRELSIBER
BENERRIEIDHAREF

MENABEH |, REMERAZFFEZ MR LHRRILZR0FEIT , BREEEN &
WAR , AHERERRITFENEMAEY , XL EIMREE
MEBIEIAIRE BHOSHETIIESLAAR , RIBEHthERERR
MRVEEFHEFRARBABHFEIOR | R—ESTWRUEFN

BIBEID !

RERUFENRE HRAILIRESFRE | FlEEAERSE I RN,
EPFEMZLabSTERAEBERT | BMERRHARIRERIER Y L1Z5E—abfE
5 , AIBER U8 FFEARNE eI Serl R ELUER T .

ZIMHFIEHAR | RRIEILLABBREX , EBRETERERR , THBDEEIMESRFALUR
HIRAEEFrust, EIFAOPPT , REFMAVRYF , EIRHI5ME. SCHNEIRER , Ak
REsRENERE BARIMMEFSRLEHENRREHC Z KA REER , FILURLE
iChw , EELIERARdocker , gdbi+ARFREIDER F—BRIRHRRILLS | S XM—
8, FERRL—ERME , FETRIR—KR. TEREF2EIT LRHRE—L85 L
EBIBISRRTRMERS , EFENARAITHRT | B M LUBERInETR XX
MIFREIAE, PRBRREITHIERLT | BB ItRYF | SR AEIREEH,

BASNRFXERRE T |, BZE T EIMABBEOAR | tHRsEFE) TREEIEosfIRAM
FRAAHE , REWICRIRS A, BN : BFEAMXEWATURRHAER , TASHER
ABRIERE |, (RIS,

REEBITHNRE

Mengwei Xu @ BUPT Fall 2024

MABGXF A osIFIBEEERRILRATEN. boslabi@itiIthRiF, MosiRPHasthE¥ IR
B,

BRER—RNENRRF LTRSS VB LIERR | SRR P — L
MEBRSEST.

FBoh . labRIERARAEBIHA— LB 7 | LRI MUIRA—T |, Si&ER EH—T
. XEPRENR EHERER SRR

BE FREBITRosIRiiST !

SR

WL FRTREFA , MHENRRE T EBIOAR. —RI MR A2tk
ROIESS (labFifEdk) HEREFE—L | R EMpptEREO TSI —LER.

ERSHEBRSENBERRIRE | ZaEEL , HEbRNFRSE R , BIHRER
HEXRARRESERB AN BhiE

BITHHRHES

RS IEAET | BRaIERERRE

WEANRIEREY , NBRFEE | (BREBAIMRSIERARMEN , ATLERIR—REE | &
EDOWEHED

RIRMFIERE , (BRESHRNY , BIAHESEME TAFERTE ; labhBRIFREREX
RIRERHZELAG ; office hourfRERIX ; IWZABIET , BFLLITHREEENESR ; ¥
B)PAIBIEEYTH | (RIFET !

BEHARY BFRERS , IrEITRRRIEFHRER | BEEID

LabLEEEAKT . BAEINRFSER | EEALabER EE—5K6EE , ICREAE &
ETUARELNENRE , RESERABTTEAST | FILSIRBRI , h1EAERERS
18 , A +RER | UERIURRIRRRFES.

fiEa:D)

ETHREIMEOR , BRARBSZATLAR—MIFR5RE. XTFAFEESEcachefIniREEE

THEHEMRE DT EANRERIEXZ AR FE ARG LR ERAORHRRETE
MRISMREN HSUXTRMERAXI RN ARBREEE RESIM LRBAR AR BFL

BESTIANE R ERMREETE BRI MIHAOMAR DRCREIRER ARREEE
FEBBIMARNSDERTHEIC TR X TRAER N FIRBFNENR FRLAFZ2EITATLL
BREBRGTE | IFHBSHHREIM—ENTH REMHERE !

SITHREF | (ERHR b TREEMNFERAE

BB | BTSRRI IRIFATESET | FEITRS | IFHREITTAS!

AILURREZAIERE

RRFETREFAA BIMERAC , BRFNNENEFLlabiER M gemulR{FiEILREA

BB PSR OIRIRIRE PR E

FEYREMARBLIETEL NEBDAFHGE

!

!

ZITHRORIFREE , EENT LSERS TS IUSEIZRREERR

lablFHE , FEALERHIR M BB BN —LEMPRNESS | FEF IS

ERFEEN | BEENHRRAOY

About This Course - Grading

* Homework (30%)
1 <200 lines of code as designed
1 Reports, code, documents, paper reading, etc.

* Final (70%)

» Bonus (5%) — MIT JOS 6.828
O https://pdos.csail.mit.edu/6.828/20 1 8/labs/lab |

 Let TAs know that you take the challenge within 2 weeks.
L There will be face-to-face test at the end of semester

* Bonus (19%) — Find error in ChatGPT

 If you find it answers wrongly about OS concepts (in English)
 Report it immediately to TAs — only one student gets credits for the same error

9/10/24 Mengwei Xu @ BUPT Fall 2024 8

9/10/24

Projects

Contents Egt\ﬂgzna?znc;[ebug Grading policy I\I\/H;Stment Reason to choose
S*m“h*'eﬁ‘l S |leveleoncepisof | Verysimple anewrite ~t5hes | stilllearnsorme basic

&S deoeuments OSHnrovdedse

* Complete all labs

Implement a fully- and write Probably the once-in-
JOS (MIT | fledged kernel from | QEMU emulator, documents 80 hre | life chance to write
6.868) scratch by filling out | hard to debug e |-to-l interview

. . . your own kernel!
the missing pieces in the end of
semester

Advise: do not take the JOS for better grades

Mengwei Xu @ BUPT Fall 2024

Goals for Today

e About this course
* What is OS?
* Why learn O%!

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 10

What is OS?

* A bridge between hardware and apps/users.

* Or, a special software layer that provides and manages the access from

apps/users to hardware resources (CPU, memory, disk, etc).
* “We can solve any problem by introducing an extra level of indirection” — David Wheeler

Users

Operating Systems (Windows, Linux, Android, IOS, HarmonyOS...)

Hardware Resources (CPU, GPU, memory, disk, I/O devices...)

9/10/24 Mengwei Xu @ BUPT Fall 2024 11

The Role of OS

e OS as referee

 OS as illusionist

* OS as glue

9/10/24 Mengwei Xu @ BUPT Fall 2024 12

The Role of OS

e OS as referee e Resource allocation
- Multrtasks on constrained resources
- What if there is an infinite loop!?

* [solation
- Fault in one app shall not disrupt others
- Prevent malicious attackers

e Communication
- Reliable, safe, and fast

9/10/24 Mengwei Xu @ BUPT Fall 2024 13

9/10/24

The Role of OS

 OS as illusionist

* |[llusion of resources not physically
present

- Processor, memory, screen, disk..
- Ease of debugging, portabillity, isolation

* A step further: virtual machine

kKemel HYPERVISOR scheduler

PHYSICAL HARDWARE

CPU Storage Memory Networking

Mengwei Xu @ BUPT Fall 2024 14

The Role of OS

* Providing common services to facilitate
resource sharing

read/write files

share memory

pass messages

« OS as glue - Ul
* Decouple HW and app development

- As an interoperabllity layer for portability

- Most applications can evolve independently
with OS, unless those require very low-
level programming such as databases

9/10/24 Mengwei Xu @ BUPT Fall 2024 15

Code Example: CPU Virtualization

#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include <assert.h>
#include "common.h"

int
main(int argc, char *argv[])

{

O 0 N o O s LN

if (argc !'= 2) {
fprintf (stderr, "usage: cpu <string>\n");
exit (1);

—_
N = O

}

char xstr =
while (1) {
Spin(1);
printf ("$s\n", str);

—_
W

argv[l];

[T o S S S S G Sy
N3 o G W

}

return 0;

[
o O
——

9/10/24 Mengwei Xu @ BUPT Fall 2024 16

Code Example: CPU Virtualization

int ¢
main(int argc, char *argv[])

{

. #include <stdio.h> prompt> gcc —-o cpu cpu.c —-Wall
» #include <stdlib.h> prompt> ./cpu "A"

3 #include <sys/time.h> A

4+ #include <assert.h> A

5 #include "common.h" A

6 A

7 R

8

9

if (argc !'= 2) {
fprintf (stderr, "usage: cpu <string>\n");
exit (1);

—_
N = O

}

char xstr =
while (1) {
Spin(1);
printf ("$s\n", str);

—_
W

argv[l];

[T o S S S S G Sy
N3 o G W

}

return 0;

N =
o O
——

9/10/24 Mengwei Xu @ BUPT Fall 2024 17

Code Example: CPU Virtualization

#include <stdio.h> prompt> gcc —-o cpu cpu.c —-Wall
#include <stdlib.h> prompt> ./cpu "A"
A

#include <sys/time.h>

1
2
3
4+ #include <assert.h> A
5 #include "common.h" A
6 A
7 1int "C
8 main(int argc, char xargv[]) prompt> ./cpu A & ./cpu B & ./cpu C & ./cpu D &
9 | [1] 7353
10 if (argc !'= 2) { [2] 7354
11 fprintf (stderr, "usage: cpu [3] 7355
: . [4] 7356
12 exit (1);
A
13 } B
14 char xstr = argv[l]; D
15 while (1) { C
16 Spin(1l); A
17 printf ("$s\n", str); B
18 } D
19 return 0; C
A

N
o
——

9/10/24 Mengwei Xu @ BUPT Fall 2024 18

Code Example: Memory Virtualization

#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>
#include "common.h"

int
main (int argc, char xargv[])

{

O 0 NN N ok W

int *p = malloc(sizeof (int)); // al

assert (p != NULL);

printf (" ($d) address pointed to by p: %p\n",
getpid(), p); // a2

*p = 0; // a3

while (1)

e e S e O S S e ¥
(o)) (63} > w N —_ o
* n
‘O 'O
-
s
*
A"O S~
~e

1;
%d) p: %d\n", getpid(), *p); // a4

®

§o)

=
l_l-

o)
=t
Hh

return 0;

N =
[== 2NN
——

9/10/24 Mengwei Xu @ BUPT Fall 2024 19

Code Example: Memory Virtualization

1 #include <unistd.h> prompt> ./mem

» #include <stdio.h> (2134) address pointed to by p: 0x200000
3 #include <stdlib.h> Egigj; g; ;

4+ #include "common.h" (2134) p: 3

5 (2134) p: 4

6 1nt (2134) p: 5

7 main(int argc, char xargvl([]) “C

s |

9 int *p = malloc(sizeof (int)); // al
10 assert (p != NULL);

11 printf (" ($d) address pointed to by p: %p\n",

12 getpid(), p); // a2
13 *p = 0; // a3
14 while (1) {

15 Spin(1l);

16 *xp = *p + 1;

17 printf (" (%d) p: %d\n", getpid(), *p); // ad

—_
(o ¢}
[—

return 0;

N =
[== 2NN
——

9/10/24 Mengwei Xu @ BUPT Fall 2024 20

Code Example: Memory Virtualization

1 #include <unistd.h> prompt> ./mem .
» #include <stdio.h> E;}gj; a?diess pointed to by p: 0x200000
3 #include <stdlib.h> (2134) g: 5
+ #include "common.h" (2134) p: 3
5 (2134) p: 4
6 1nt (2134) p: 5
7 main(int argc, char xargvl([]) “C
s |
9 int *p = malloc(sizeof (int)); prompt> ./mem & ./mem &
10 assert (p != NULL); %;% 22112

. . .
n printf (" (%d) addres? pointed L0 ,4173) address pointed to by p: 0x200000
12 getpid(), p); (24114) address pointed to by p: 0x200000
13 *xp = 0; (24113) p: 1
14 while (1) { (24114) p: 1
15 Spin(1l); (24114) p: 2

. ?

16 *p = xp + 1; 223112; p: g Why not 1,2,3,4..
17 printf("(3%d) p: %d\n", getp 5,174 g; 3
18 } (24113) p: 4
19 return 0; (24114) p: 4
20 }

9/10/24 Mengwei Xu @ BUPT Fall 2024 21

The Goal of OS

* Managing hardware resources
* Allocating resources to concurrent tasks, who gets more!
* Determining hardware status: CPU frequency, /O device on/off, etc.

* Facilitate app developers

* |llusion of resources not physically present
* Large memory size

* |solation of apps
* 50 a bug does not cause the machine down

* Cross-apps communication
* Without

* Facilitate users
* Ul components and rendering

9/10/24 Mengwei Xu @ BUPT Fall 2024 22

The OS concept is expanding

e Android/TensorFlow/WeChat
« OS vs. kernel (X

Android runtime

Core
framework libraries

ew
Dalvik virtual
Cor

(The focus of
this course)

Keypad driver

9/10/24 Mengwei Xu @ BUPT Fall 2024 23

The OS concept is expanding

e Android/TensorFlow/WeChat
* OS vs. kernel (N1%)

-

Applications System Software

Operating
System

System Libraries

(The focus of

Shells, GUIL.. Kernel :
this course)

9/10/24 Mengwei Xu @ BUPT Fall 2024 24

Goals for Today

e About this course
e What is O
* Why learn O%?

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 25

Why Study OS? (1/3)

* OS is a fundamental piece of computer science.
* It's everywhere and will be long-standing.
* It extensively adopts the most important concepts in CS.
* It extensively interacts with hardware, compliler, PLs, runtime, etc.

. what are the top-5 important courses in computer science
RE, ER/HENETWREEMNGITRE:
Computer science is a diverse field with various sub-disciplines and specializations. The 1. BIEEHM 5 EX

importance of specific courses can depend on your career goals and interests. However,
here are five foundational and important courses in computer science:

2, HHENARRE

1. Data Structures and Algorithms: This course is fundamental in computer science. It I_ - =1
teaches you how to design, analyze, and implement efficient data structures (e.g., arrays, 3. gﬁ%ﬁ I
linked lists, trees) and algorithms (e.g., sorting, searching) essential for solving complex —
problems and optimizing software performance. 4. i'I-Qlﬂl,Wléﬁ

2. Programming Languages: A course on programming languages explores different
programming paradigms (e.g., imperative, object-oriented, functional), syntax, semantics, 5. ﬁﬁg
and language design principles. It helps you become proficient in multiple programming
languages, which is crucial for versatility as a developer.

Databases: Undleretanding datab S atan © e (OBMS) | ZFAIMERAMEAREENR, EXEE—RFIZ0, EARBEEA MR, XAEM
3. Databases: Understanding databases and database management systems is e . N — . N
: ; . 22 ! : RENWESH, ETHMHEZFRE, CHRES. BEEMRETRRTEE, REBNTRIEE
essential for handling and storing data efficiently. This course covers database design, syt . }
guerying with SQL_transaction management, and database optimization., __ o iﬂ:ﬂﬁlﬂ@ﬂ‘]tbﬁ')o
1. Operating Systems: An operating systems course delves into the principles and
components of modern operating systems, such as process management, memory I BTR, BEMBARSET, BESRIBEMSEE. iTENER. RERSK. iTENNE, HiE
I management, file systems, and concurrency. It's crucial for understanding how software FEXLERIENBMMA, HEMANITBZHMAIEE.

- alLTACISWIIRLAIGRAIE ey aw e e e e e e e e e
5. Computer Networks: Computer networks are the backbone of modern computing. This X BT T Y E S B EMN,

course teaches the fundamentals of networking, including protocols, routing, security, and

network design. Understanding how data moves across networks is vital for various

applications, including web development and cybersecurity.

g
ot

A #EF2095 Vv @30 %Ki 4 ® EKE @ER - e A~

9/10/24 Mengwei Xu @ BUPT Fall 2024 26

Why Study OS? (2/3)

e OS is useful

* Whatever you work at correlates to OS
- HPC, mobile/edge/cloud computing, ML/AI, security, etc..

* Helps you understand why your program does not work well
* Helps you to get a good job

Version Implementation Running time (s) GFLOPS Absolute speedup
for i in xrange(4096): é ... Eﬁff‘..r.‘.‘?..r.‘ ... - 25;7522;38 88?2111
. . . ava 372. |
for j in xr\ange(4@96) . 3 ... C ... 5 4267 0253 47
for k inxrange(4096): = g iloos G980 1960 we
C[1][3] +=Ali][k] * BLk][3] g~ Paraliel divide and conguer g 36180 6727
O plus vectorization 10 124914 23224
7 plus AVX intrinsics 041 337.812 62,806

Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, ButlerW Lampson, Daniel Sanchez, and Tao B Schardl. There’s plenty of room at the top:What will drive
computer performance after moore’s law? Science, 368(6495), 2020.

9/10/24 Mengwei Xu @ BUPT Fall 2024 27

Why Study OS? (3/3)

e OS is cool

* Probably the most complex software you will deal with
* The critical path to understand how computer really works

How does
Computer

9/10/24 Mengwei Xu @ BUPT Fall 2024 28

9/10/24

Why Study OS? - especially as Al students

shall students majoring artificial intelligence study operating system course

From ChatGPT

In an academic curriculum focused on Artificial Intelligence (Al), the Operating Systems
course might not appear to be directly applicable, especially when compared to courses like
Machine Learning, Natural Language Processing, or Computer Vision. However, there are
several compelling reasons why students majoring in Al might still benefit from

understanding operating systems:

. Resource Management: Understanding how an operating system allocates resources can

help Al developers optimize computational tasks, particularly important for machine

learning models that may require substantial computational power.

. Concurrency: Al applications often involve parallel or distributed computing. An

understanding of processes, threads, and scheduling can be beneficial for implementing

and optimizing these types of systems.

. System-Level Understanding: A well-rounded comprehension of computing environments

can help Al practitioners identify bottlenecks or issues that may arise during the

development and deployment of Al applications.

. Versatility: Al specialists often need to collaborate with engineers focused on other parts of

a software stack. A knowledge of operating systems can make this collaboration more

effective and can expand the range of roles that an Al major might be qualified for.

. Software Engineering Practices: Operating Systems courses often delve into topics that

improve one's overall software engineering skills, such as debugging, performance
optimization, and understanding of system calls, which are beneficial when developing or

maintaining larger Al projects.

In summary, while an Operating Systems course might not be as directly relevant to Al as
other specialized courses, the foundational knowledge it provides can be invaluable for
more advanced work and for broader career flexibility. Therefore, it's generally a good idea

for students majoring in Al to study Operating Systems. © Regenerabr 11 515
a

@D shall students majoring artificial intelligence study operating system course

From LLaMA-70B

Students majoring in Artificial Intelligence (Al) may not necessarily need to take an
Operating System (OS) course, depending on their specific interests and career goals
within Al. Here's why:

While OS is an important area of computer science that deals with the internal
functions and operations of a computer system, it may not directly impact many areas
of Al research or application. Many Al techniques involve working at higher levels of
abstraction than the low-level details of an OS, focusing instead on machine learning
models, natural language processing, computer vision, robotics, and other key
subfields within Al.

That being said, there are some potential reasons why studying OS might still be
beneficial for Al majors:

1. Understanding system architecture: An OS course provides an overview of the entire
computer system, including hardware components, memory management, process
scheduling, and I/O handling. These concepts can help Al students better understand
how various software systems interact with each other and how they can be designed
to support Al applications. For example, understanding how the OS manages memory
and processes can inform strategies for efficient use of computational resources in
deep learning frameworks.

2. Networking and distributed computing: As Al applications become more
widespread and complex, they often require networking and distributed computing
capabilities to function effectively. Learning about OS-related topics like network
protocols, socket programming, and distributed systems can provide valuable insights
into how Al systems can be designed to communicate and coordinate across different
nodes and devices.

3. Security considerations: With the growing concern about data privacy and security
in Al applications, having a basic understanding of OS-related security mechanisms
(e.g., access control, cryptography) could prove useful for Al majors. This knowledge
can help them design more secure Al systems and protect against potential cyber
threats.

In summary, while an Operating System course may not be strictly necessary for all Al
majors, it can complement their studies by providing a broader understanding of
computer system architecture, networking, and security concerns that are relevant to
many areas within Al research and development.

29

Who Cares OS?

* Academia: USENIX/ACM/IEEE
* Conferences: SOSP/OSDI/USENIX ATC/EuroSys/ApSys.

* Companies

* (direct) Microsoft, Google, Apple, Huawel..
* (indirect) NVIDIA, Intel, Meta, Alibaba..
* Hardware and OS always co-evolve!

* Developers who benefit from OS knowledge: everyone!

9/10/24 Mengwei Xu @ BUPT Fall 2024 30

Goals for Today

* About this course

* What is OS!

* Why learn O%!?

* Challenges and how to overcome!
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 31

Challenges

* Complexity
* Windows 10 has roughly 10,000,000 lines of code.

* OS directly deals with hardware
* OS crash means...

» OS manages concurrency (F%)

* A major source of software bugs

* OS cares many metrics
* Reliability, availability, performance, energy, etc...

* Gap between concepts and code

* There are historical baggage

9/10/24 Mengwei Xu @ BUPT Fall 2024 32

How to Overcome?

* Think more and ask why
* What's the benefit! What if..?

e Be Interactive
* |n and after course

* Be patient
* loo many abstractions and indirections

* Get your hands dirty

9/10/24 Mengwei Xu @ BUPT Fall 2024 33

Goals for Today

e About this course
e What is O
* Why learn O%!

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 34

OS history

* Serial Processing (FB17)
- No OS, users directly interact with machines
- Output displayed by lights

« No scheduling (AE) ‘T. char
! ime Sharing

* Huge setup time (1970s-?)
‘Multiprogramming
(1960s-1970s)

‘Batch Processing

(1950s-1960s)

Serial Processing
(1940s-1950s)

9/10/24 Mengwei Xu @ BUPT Fall 2024 35

9/10/24

OS history

* Simple Batch Systems (faj B2t 4 IE)
- A "monitor’ that batches jobs together
and controls the programs running
- Program branches back to monritor when

finished ‘
- (part of) Monitor always in memory (Tlir;foi‘?a)”"g
- Maximizes the machine utilization ‘Multiprogramming
(1960s-1970s)
* Simple, coarse-grained scheduling
. Uniprogramming ‘Batch Processing

(1950s-1960s)

Serial Processing Operator

(1940s-1950s) T
\0 ;
/04
\

Computer

%y / Batch
- \ s
. Job -

: \00 Batch

Mengwei Xu @ BUPT Fall 2024

36

9/10/24

OS history

Multiprogrammed Batch Systems (% ig it 4b18)
- Processor can switch among different jobs
when they are running (waiting for 1/O)

- Memory management, scheduling, save and

restore ‘ | |
- Optimized for job throughput (vs. speed) (ng‘foi‘?a)””g
‘Multiprogramming
Not enough for user interactions (19605-1970s)

‘Batch Processing

(19505'19605) cPU

. Disk f=°°

Serial Processing
(1940s-1950s)

Printer Printer

fo——— &)
Job History | JOB1

T
| T T
Job tustory |55 = =
Caom — —douz ——dop
o s 10 15 20 2s
minutes .l()#.‘ 8
o s 10 15

e
minutes tme

JOB2

(a) Uniprogramming (b) Multiprogramming,

Figure 2.6 Utilization Histograms

Mengwei Xu @ BUPT Fall 2024

37

OS history

 Time Sharing Systems (43 BJ & %¢)
- A logical extension of multiprogrammed

systems
- Users/processes allocated with computer
resources (time slots) ‘
- : Time Sharing
- Designed for faster response time (19705-2)
‘Multiprogramming
* [t consumes many resources (1960s-1970s)
‘Batch Processing
(1950s-1960s) User 3 User 4
.Serial Processing Jser 2 ~ Jsero
(1940s-1950s) \/ (Active state)
User 1 User 6
(Ready state)

9/10/24 Mengwei Xu @ BUPT Fall 2024 38

Other OS types

* Real-time OS (SLRT#R{ER %)
* vs. General-purpose OS (1B HIR1ER %K)
* Used in robots, satellites, airplanes, etc..

* Distributed OS (3 I TVIR1ER %)
* Could be atop traditional OS
« C/S, P2P

* Microkernel
* vs. Monolithic kernels
* Small size: moving drivers, filesystems, etc to user space

* Securer, but slower
* Many OSes are hybrid (Mac OS)

9/10/24 Mengwei Xu @ BUPT Fall 2024 39

Summary of OS Evolution

* Adapting to new hardware
* Multi-core CPU, GPU, NPU, NVM, RDMA.

* Adapting to new workloads
* Machine learning serving/training, distributed programs, AR/VR..

* Adapting to new user demands
* Faster, more responsive, lower power..

* Hardware Is cheaper, yet humans are more expensive

9/10/24 Mengwei Xu @ BUPT Fall 2024 40

Summary of OS Evolution

Centralized Decentralized Centralized Decentralized

9/10/24 Mengwei Xu @ BUPT Fall 2024 41

Goals for Today

e About this course
e What is O
* Why learn O%!

* Challenges and how to overcome!?
* Brief history of OS

* Warmups

* Computer organization
* CPU, ISA, assembly, etc
* Lifetime of a “Hello World" program

9/10/24 Mengwei Xu @ BUPT Fall 2024 42

Computer Components

* CPU, Memory, Disk, Input devices, Output devices
* Thisis a very rough understanding

Primary Memory

(RAM)
Central
Input) Output
devices $ Pro.ceSSlng $ devices
Unit (CPU)

§ v

Secondary Memory or Storage
(Hard Disk)

9/10/24 Mengwei Xu @ BUPT Fall 2024 43

Computer Architecture

* Direct Memory Access (DMA, B IEFE315(9))
* CPU directly accesses data in cache and memory, but not disk.

Central Processing Unit (CPU)

ALU

Registers
I/O Devices

Control Unit

Main memory Disk Monitor

Bus

9/10/24 Mengwei Xu @ BUPT Fall 2024 44

CPU

* ALU operates on registers
* CU loads/saves data from/to memory

9/10/24 Mengwei Xu @ BUPT Fall 2024 45

CPU

* In x86-64 CPUs, there are |6 64-bit general-purpose registers and
many other special purpose registers

| 64-bit || 32-bit | 16-bit | 8-bit (low) | * Instruction pointer (EIP/IP)
{ ggi “ ESQ H gi “ gt } ¢ Status registgr (RFLAGS)
[Rox | Ecx ox cL * Segment registers (CS, SS, DS, ES, FS, GS)
[RDX | EDX DX DL * Control registers (CRO-CR15)
RS ESI SI SIL * Last bit of CRO indicates if CPU is in
RDI EDI £l DIE protected mode or real mode
QZE Ezi gg zit * 3t bit of CRO indicates if paging is enabled
| RS I ReD RBW REB * (CR2 indicates the page fault address
| R9 [ReD ROW R9B * SIMD and FP registers (AVX.)
| R10 I RrRioD | Riow | R10B | e Ftc..
| R11 I R1D | R1tw | R11B |
} 2:2 ” 2123 ” zlzx H 212: I * Those special registers determine how CPU
[R4 | R14D | R1aw | R14B | operates
| R15 I RisD | Risw | R15B |

9/10/24 Mengwei Xu @ BUPT Fall 2024 46

CPU

* An example of “a=1+2"
 Von Neumann architecture (BB = 48
* Program Counter (PC, 2 Z1T418%)
* Also known as instruction pointer (IP)

 Assembly code ;L ZBFEF)

9/10/24 Mengwei Xu @ BUPT Fall

1)

2024

Code
region

Data
region

—

Address

Content

save R2 -> 0x 108

add RO RI -> R2

load Ox 104 -> R|

load Ox 100 -> RO

Memory

47

CPU

http://ref.x86asm.net/coder32.html

[
Instruction set for a Relatively Simple CPU

(1)
* An example of “a=1+2
Instruction | Code Operation
: NP o v —Nsln| NOP 0000 0000 | No operation
 Von Neumann architecture (31 WK = 28449) O 00000000 Mo opera
O N kLo STAC 0000 0010 T | MITIAC
o Program Counter (PC, y == %'L—I— éﬁﬁ%‘) MVAC 0000 0011 | RAC
MOVR 00000100 | ACR
° ' ' | Jump 00000101 T | GOTOT
Also known as instruction pointer (IP) o o
N ﬁ IO }+ JPNZ 00000111 T | IF (Z=0) THEN GOTO T
° ASSemb|)’ code (/Eg £ %) ADD 0000 1000 | AC—AC + R, IF (AC + R = 0) THEN Zc1 ELSE Zc-0
SUB 0000 1001 | ACAC — R, IF (AC — R = 0) THEN Zc1 ELSE Z-0
INAC 0000 1010 AC—AC + 1, IF (AC+ 1 = 0) THEN Z«1 ELSE Z&0
CLAC 0000 1011 | ACe0, Z1
AND 0000 1100 AC—ACA R, IF (ACA R = 0) THEN Z«1 ELSE Z<0
: :) [0000 1101 | ACACv R, IF (ACv R = 0) THEN Z1 ELSE Z-0
* How CPU understands (decodes) Instructions? [xoe [o | ac-ace & iraco r-omen zci asezco
NOT 0000 1111 | ACCAC’, IF (AC’ = 0) THEN Z—1 ELSE Z0

 Opcode (#1ERY), Operands (F21E£0)
* Instruction Set Architecture (ISA, 5% 822 4)
* How many you know!?

Opcode Operands/Address

add RO RI R2

9/10/24 Mengwei Xu @ BUPT Fall 2024 48

CPU

* Internally, it's about circurt and very complex

9/10/24

REGISTER
Bl'anCh : . Data In
L1 R Prediction ¥ |
|Cac he I I Tnstruction Reglster” Program C'ounter i
L2 6 4KB Scan/Align MULTIPLEXER § |} - 0
Cache Fastpath | Microcode Engine —— —1—F——F 1
' ' ' ! ' ' ™~
o e _—
Decoder | | l
L2 /- (10T CO Branch Prediction Add
Cache Tahle P,
System 7] -] T eome
Request [3-Way x86 Instruction Decoders "
|_Queue | - 1
Crossbar :
Central Proces: L—
Memory __b - ™
Controller it
FetchiDecode i Control §
B 3-way x86 Instruction Decoders O) [] E
Transport™ Instruction Control Unit (72-entry)
Iﬁ D Address § - mml Toall E %
Integer Scheduler (I8-entry) HH Il FPU StackiMap Rename memery e "9 R teaal ||
1 S A A 4 FPU Scheduler (32-entry) e e
» FPU Register File (88-entry) -
FAD ; %‘L'.;“'O‘}""““xs sign |2 I
.\mx @ o 5o
3DNow! Tnstructios
. E 5 O ;_ [20-16]
LoadiStore Queue Unit —]

(————— > 2-way,64KBDataCache {———

Mengwei Xu @ BUPT Fall 2024

49

CPU

* Internally, it's about circurt and very complex

REGISTER
Branch , Dataln
L2 IPLEXER
Cache]
5 ﬁ m‘*<.=
i
lsEge
#’J}{‘ s
System
Request [
== LOGIC -
Crossbar
Memory
Controller
Hyper
Transport™
Address
Data
Hausy
‘Write
data
I
Mentiead

1/Conte.
13¢ ,,....ﬂui‘:::::;ﬂn:m.v..u.m..a...m....m». .

alamu e Slai o
[System Interface L2 SRAMs]

9/10/24 Mengwei Xu @ BUPT Fall 2024 50

Lifetime of Hello Worid

| Coded with PL and IDE a_) @ |

By developers r — SR
y Ceveiop o SPYDER PyCharm S
2. Compiled to assembl °
P & Y o
* By compilers like GCC/G++/LLVM

Jupyter
3. Linked to other libs e’

e By linkers like Id

' PYDEVJ Thonny

Python IDE for beginners

Anaconda

youtrack-mobile src components issue-summary

4. Loaded to memory . : |

4 youtrack-mobile React, {Component, PropTypes}
> droid {View }
° By OS én ol styles
> 108 MultilineInput
. . . > node_modules library root
» Allocated with memory at right position v s Attachmentsow Component {
v components _
> action-sheet -
5. Executed . e ndert) ¢
> attach-file
> attachments-row
° (
By OS > auth <View {...rest}>
> cache <Te
° See prev'ous Sllde > color-field TextInput ReactNative (react-native.js, react-native)
> comment CreatelIssue
» m config t s
6 —|— ' _t d > TSR d ~ ‘vyi!\‘njgvegaretdownand up in the editor
. erminate > Bm custom-fields-panel SEEINIESIE }
autoCapitalize
. | multiline={ +
hd By OS Wlth I’eturﬂ Commaﬂd underlineColorAndroid
v youtrack-mobile/package.json placeholder:
o start value={ }
hd MemOI”)/ I"€|eaS€d o test onChangeText={

</View>

o test-ci

o test:watch

o lint

o ios

o ios-set-version
o ios-clean

o ios-archive

9/10/24 Mengwei Xu @ BUPT Fall 2024 51

9/10/24

Lifetime of Hello Worid

Coded with PL and IDE

* By developers

Compiled to assembly
* By compilers like GCC/G++/LLVM

Linked to other libs

e By linkers like Id

Loaded to memory

By OS

» Allocated with memory at right position
Executed

By OS

* See previous slide

Terminated

e By OS with return command
* Memory released

printf (" , W '\n");

return

hello_world.c

Compiler |:>

((0110011000100010011000111)

1100000001111111110000001
1111000110101010001100011
0011000100010011000111110
0000001111111110000001111
1000110101010001100011001
1000100010011000111110000
0001111111110000001111100
0110101010001100011001100
0100010011000111110000000
1111111110000001111100011

\~smsmsmnnsinnnisnnssnnnsn

hello_world.o

LLVM Compiler Infrastructure

i){ Front
=L Ends
- ..

Objective-C

& pylhon

DS
#Scala

—_—

Mengwei Xu @ BUPT Fall 2024

LLVM

Typed SSA —>1
IR Code
Gen/lJit

Optimizations/
Transformations

‘\ Analysis |

MIFPS

SPARC

PowerP¢

52

Lifetime of Hello Worid

Coded with PL and IDE

* By developers

Compiled to assembly
* By compilers like GCC/G++/LLVM

Linked to other libs
* By linkers like Id

Loaded to memory

By OS

» Allocated with memory at right position
Executed

By OS

* See previous slide
Terminated

e By OS with return command
* Memory released

” i
Source

file
/\-_

/—\
Source

Assembler

file
N

e —

Source

Assembler

file

Assembler

Mengwei Xu @ BUPT Fall 2024

Compile, assemble, and link to executable
gCcC test.cC produces test.exe

Object
file

Object
file

Object
file

4133

Executable
file

9/10/24

Lifetime of Hello Worid

Coded with PL and IDE

* By developers

Compiled to assembly
* By compilers like GCC/G++/LLVM

Linked to other libs

e By linkers like Id

Loaded to memory

« By OS

* Allocated with memory at right position
Executed

By OS

* See previous slide

6. Terminated

e By OS with return command
* Memory released

high

address >

uninitialized
data(bss)

initialized
data

low text
address

Mengwei Xu @ BUPT Fall 2024

s

< >
-

PN

A4

command-line arguments
and environment variables

initialized to zero
by exec

read from
program file by
exec

54

Linux Command-Line Interfaces

Linux Cheat sheet
by AMahouachi

1 File Commands
Is [options] file
options
a: show hidden files
A: show hidden files except . and ..
d: only show directories
h: human readable size
i: inode info
I: long list format
m: output as csv
n: numeric uid and guid
r: sort in reverse order
S: sort by file size
t: sort by modification time
tree [options] dir
options
d: only directories
f: show full paths
P pattern: only matching pattern
I pattern: except matching pattern
h: print sizes in human readable for
mat
C: use colors
L max: max level depth

cp [optlons] source dest

‘kup dest before overwrite

I: recursive

f: force

I: link files instead of copy

P: dont follow sym links

i: interactive

u: copy only if source newer than dest
mv [options] source dest

options

b: backup dest before overwrite

f: force

i: interactive

u: move only if source newer than dest
In [options] file link

options

s: sym link (hard by default)

f: overwrite link if exists

b: backup old link before overwrite
rm [options] file

options

f: force

i: interactive

rm — -foo if file name is -foo
chmod [options] mode file(s)
options

R: recursive

symbolic mode

format: [ugoa][[+-=][perms]],...
example: u+x,0-wx,g-w

u: owner

:.;: grnup

o: others

a:all

+: add mode

: remove mode

=: exact mode

r: rea

w: write

x: execute files and search for dirs
X: search for dirs

s: setuid or setguid

t: sticky bit

numeric mudu

format: [

first digit: setuid(4), setguid(2)
second digit: owner perms

third dlgl group perms

fourth digit: others perms

read: 4

write: 2

execute: 1

find path [options] [tests] [actions]

options:

mindepth: start from min level in hier
archy
maxdepth: end with max level in hier
archy

tests:
name "Xy name like xyz*
iname ": like -namé but case in

sensitive
type d: only directories
type f:only files
mtime 0: modified
mtime -x: modified < x days

mtime +x: modified > x days

mmin: like mlmu but in minutes
size +10 > > 100mb

size = l()l]mb (k for kb, G

< 1 day

for gb)

perm /o+w: writable by others
v

!-perm /o+r : not readable by others
actions:
print: print matching

delete: rm matching files

exec emd |}’ ; : run emd for every
match

exec emd [} +
search
execrm -rf "’ : rm -rf matching items
fprint /tmp/result: write matches to
/tmp/result
diff [options] files

options

:run emd at the end of

r: recursive

w: ignore whitespaces

B: ignore blank lines

q: only \hl)\\ file names

X \\m : exclude files with path like
sync*

grep [options] pattern files
options

1: ignore case

P: pattern is a perl regex

m: stop after m matches

n: also show matching line number
R: recurse directories

¢: only show matching lines count
—exclude=glob : exclude these
-include=glob : only consider these
cat [options] file(s)

options

\ non ascii chars except tab and eol

T: show tabs

t: equivalent to -vT

E: show eol end of line

e: equivalent to -vE

A: equivalent to -vET

s: remove repeat empty lines
tail [options] file

options

f: show end of file live

35: show last 35 lines

q: be quiet
head [options] file

options

35: show first 35 lines

q: be quiet
tac file(s)

print files starting from last line
cut [options] file

options

d char: use char as delimiter
£1,3,5: print fields 1, 3and 5
uniq [options] input output
options

c: prefix lines by number of occur
rences

d: only print duplicate lines

u: only print unique lines
sort [options] file

options

n: numeric sort

b: ignore blank lines

f: ignore case

r: reverse order
tar [options] file

options

f file: archive file

C: create

t: list

X: extract

C DIR: ¢d to DIR

z: gzip

j: bzip2
du [options] file

options:

¢: a grand total

h human readable

L: dereference sym links
P: no dereference of sym links
s: total for each argument
—-exclude=pattern
max-depth=N: dont go deeper than N

df [options] file

options:

h: human readable

i: list inodes info

P: no dereference of sym links
2 Process Commands
ps [options]

options:

e: all processes

f: full listing

H: show hierarchy

p pid: this process pid

C cmd: this command name ¢md
w: wide output

ww: to show long command lines
I: long listing, including wchan
0 X,y,2: show columns X y 2

o user,pid,cmd: show columns user,

pid command

N: negation

u user: processes owned by user
u user -N: processes not owned by user
—sort=x,y: X y are columns in ps output
—sort=user: sort by user

—sort=+time: sort by cpu time asc
—sort=-time: sort by cpu time desc
—sort=size: sort by memory size
—sort=vsize: sort b\ vm size

top [options]
options

d x: refresh every x seconds

p pidl -p pid2: only processes with
pidl pid2

¢ : show command lines
interactive commands
space: udpdate display
n: change number of displayed proces
ses
up and down: browse processes
k: kill a process
o: change order

T: sort by time

A: sort b\ age

P: sort by cpu

M: sort by memory

c: display/hide command line

m: display/hide memory

t: display/hide cpu
f: manage list of displayed columns
up and down: move between columns
d: display/hide the selected column
q: apply and quit the field mgmt
screen

pgrep [options] pattern
options

1 : show pid and process name
a : show pid and full command line
: if more than one show newest
: if more than one show oldest
u uld show only processes of uid
¢ : count results

3 Network & Remote
ssh [options] user@host ["cmd1;ecmd2"]
uptinm:

2: force protocol 2

o StrictHostKeyChecking=no: ignore
warnings due to remote host key
change

X: forward X11 display
wget [options] url

options:

b: run in background

o iilc: print wget output in file

/dev/null: suppress wget output
3 be quiet
ebug

O file: save response to file

¢: resume file download

S: print server headers

T N: timeout after N seconds
—user=user: basic http auth user
—password=password: basic http auth
password

—save-cookies file: save cookies to file
—load-cookies file: use file as cookies
—post-data=string

—post-file=file

-no-check-certificate: ignore ssl certifi
cate
curl [options] url

options:

H header: like -H "Host: st.com”

u <user:password>: basic http auth

s: be silent

': show errors if silent mode

: follow new location in case 301

—ddld “field=value™: x-www-form
urlencoded query

—data-binary data: post data as is wi
thout encoding

—data-binary @filename: post filename
content as is

X method: use PUT, GET, POST etc.
-request method: use PUT, GET, POST
etc.
mail [options] to-address

options:

s subject: email with subject

¢ addressl ,address2: cc copy

b addressl address2: bee copy

mail -s ‘hello there’ 'joe@st.com’ < so
mefile
4 Terminal

Ctrl+C: halt current command
Ctrl+Z: pause current command

bg %]1: resume paused command in
background

fg ol: resume paused command in fo
ru,mund

Ctrl+D: logout

Ctrl+W: remove a word from current
line

Ctrl+U: remove current line

Ctrl go to beginning of current line
Ctrl+E: go to end of current line

o

the command "helj

help gives you information about
commands that comes with T-UI. click
on the input area on the bottom of
the screen and type "help".

$ help

about airplane alias aliasfile apps

"help" has also an_other important

feature: it works like Linux's man,
therefore it tells you how to use a
command. For example:

$ help

search

ill prints this:

Search something somewhere
Usage: . .
search [option] something

[option] can be:
(Google Search)
(Google Play Store)
(Files)
(YouTube)

Linux Command-Line Interfaces

* CLI'vs GUI (graphical user interface)

Graphical User Interface (GUI) Command Line Interface
Most common interface = Older interface
12 Windows, OS X, some versions of Linux 2 DOS, Linux, UNIX
and Unix = With a command-line interface, a
= Frees you from memorizing and user uses the keyboard to enter
typing text commands data and instructions
= Uses a mouse to control objects = User types commands at a prompt
= Shortcuts open programs or = User must remember all commands

documents = Included in all GUIs

9/10/24 Mengwei Xu @ BUPT Fall 2024 56

Linux Command-Line Interfaces

* Can large language models (LLMs) help?

¥

] convertthe following instruction to linux command line instructions: move the file named 3. Execute it with output dumped to "YY.out™ You can execute the file and redirect its output
"XX.cpp"to my home folder, change its permission to executable, and execute it with output to a file named "YY.out" in your home directory using the following command:
dumped to YY.out

bash) copycode

~/XX.cpp > ~/YY.out

‘ (¢ ‘ ‘ To accomplish the stated tasks, you can use the following Linux command line instructions:

. . . . Putting it all together, you can run these commands one after another in the same terminal
|. Move the file "XX.cpp" to your home folder: Assuming you are in the directory containing g 9 Y

session:
"XX.cpp", you can use the “mv: command to move it to your home folder.

bash Ej Copy code

bash) Copycode

mv XX.cpp ~/

mv XX.cpp ~/

chmod +x ~/XX.cpp
). Change its permission to executable: Once the file is in your home directory, you can ~/XX.cpp > ~/YY.out

change its permissions to make it executable using the “chmod* command.

bash Ej Copy code
This sequence of commands will move the file "XX.cpp" to your home folder, make it

chmod +x ~/XX.cpp executable, and then execute it, redirecting the output to a file named "YY.out" in your home

directory.

Calling Conventions

1. void func A() { : :
o Cintasasa; |l veld funciing x
3. int ¢ = func B(a);_ ' y = ’

. 3. return vy;
4. print(c); 4.}
5. } '
* How does func_A goes to func_B?

} stack

* How does func_B return correctly back to func_A?

Search for “calling conventions” and try to understand what
happens at assembly/instruction level

9/10/24 Mengwei Xu @ BUPT Fall 2024 58

Misc

* Many OS5 features need architecture support
* Byte, bit, word
o C/C++ pointers

9/10/24 Mengwei Xu @ BUPT Fall 2024 59

Homework

* The first homework — using large language models (LLMs) to build a
command line tool helper
o DDL: two weeks before the last course
o Local LLMs (LLaMA 2) or remote (ChatGPT or MXI[»—5), you chose
o Add if-else If needed
o Chinese support is cool and useful!
o Test with a clean environment (VM, docker) so it won't mess up your computers

* Submission: code + detalled documents + testing results
o The best ones will be demonstrated in the last course
o Don't copy from other projects!

9/10/24 Mengwei Xu @ BUPT Fall 2024 60

