
Operating Systems
Lecture 1

Why Learn Operating System?
And How?

Prof. Mengwei Xu



9/10/24 Mengwei Xu @ BUPT Fall 2024 2

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 3

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 4

• Mengwei XU (徐梦炜），副教授，硕/博导师
• Office:科研楼1107
• BA and PhD from PKU, joined BUPT in 2020
• Personal page: https://xumengwei.github.io/
• System Software, Edge Computing, ML Systems
• TAs:

About This Course

杨叶轩 王昕阁 杜嘉骏



9/10/24 Mengwei Xu @ BUPT Fall 2024 5

• Textbooks
• <Operating System Principles & Practice> (2nd edition) Thomas Anderson et al
• <Operating Systems: Three Easy Pieces> (version 1.10) Remzi H. Arpaci-Dusseau and 

Andrea C. Arpaci-Dusseau
• <Operating System Concepts>（7th Edition）Abraham Silberschatz et al

• Slides
• Much of the contents are from Ion Stoica @ Berkeley!

• Course time
• 8:00-9:35, Tuesday
• 9:50-11:25, Friday

• Materials
• There will be a website that holds everything about the course
• https://buptos.github.io/index.html

• Discipline
• Ask a question anytime, but do not disturb others from learning.

About This Course



9/10/24 Mengwei Xu @ BUPT Fall 2024 6

•WeChat Group

About This Course



9/10/24 Mengwei Xu @ BUPT Fall 2024 7

Ahead-of-course Questionaire



9/10/24 Mengwei Xu @ BUPT Fall 2024 8

• Homework (30%)
q <200 lines of code as designed
q Reports, code, documents, paper reading, etc.

• Final (70%)
• Bonus (5%) – MIT JOS 6.828

q https://pdos.csail.mit.edu/6.828/2018/labs/lab1
q LetTAs know that you take the challenge within 2 weeks.
qThere will be face-to-face test at the end of semester

• Bonus (1%) – Find error in ChatGPT
q If you find it answers wrongly about OS concepts (in English)
q Report it immediately toTAs – only one student gets credits for the same error

About This Course - Grading



9/10/24 Mengwei Xu @ BUPT Fall 2024 9

Projects

Contents Environment
setups and debug Grading policy Time 

investment Reason to choose

Simulation-
based labs

Focus on the high-
level concepts of
OS

Very simple
• Complete all labs

and write
documents

~ 15 hrs
Reasonable efforts,
still learn some basic
OS knowledge

JOS (MIT 
6.868)

Implement a fully-
fledged kernel from 
scratch by filling out
the missing pieces

QEMU emulator, 
hard to debug

• Complete all labs
and write
documents

• 1-to-1 interview
in the end of
semester

~ 80 hrs
Probably the once-in-
life chance to write
your own kernel!

Advise: do not take the JOS for better grades



9/10/24 Mengwei Xu @ BUPT Fall 2024 10

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 11

• A bridge between hardware and apps/users.
• Or, a special software layer that provides and manages the access from
apps/users to hardware resources (CPU, memory, disk, etc).
• “We can solve any problem by introducing an extra level of indirection” – David Wheeler

What is OS?

Hardware Resources (CPU, GPU, memory, disk, I/O devices…)

Operating Systems (Windows, Linux,Android, iOS, HarmonyOS…)

Apps (Office,WeChat…)

Users



9/10/24 Mengwei Xu @ BUPT Fall 2024 12

• OS as referee

• OS as illusionist

• OS as glue

The Role of OS



9/10/24 Mengwei Xu @ BUPT Fall 2024 13

• OS as referee

• OS as illusionist

• OS as glue

The Role of OS

• Resource allocation
- Multitasks on constrained resources
- What if there is an infinite loop?

• Isolation
- Fault in one app shall not disrupt others
- Prevent malicious attackers

• Communication
- Reliable, safe, and fast



9/10/24 Mengwei Xu @ BUPT Fall 2024 14

• OS as referee

• OS as illusionist

• OS as glue

The Role of OS

• Illusion of resources not physically
present
- Processor, memory, screen, disk..
- Ease of debugging, portability, isolation

• A step further : virtual machine



9/10/24 Mengwei Xu @ BUPT Fall 2024 15

• OS as referee

• OS as illusionist

• OS as glue

The Role of OS

• Providing common services to facilitate
resource sharing
- read/write files
- share memory
- pass messages
- UI

• Decouple HW and app development
- As an interoperability layer for portability
- Most applications can evolve independently

with OS, unless those require very low-
level programming such as databases



9/10/24 Mengwei Xu @ BUPT Fall 2024 16

Code Example: CPU Virtualization



9/10/24 Mengwei Xu @ BUPT Fall 2024 17

Code Example: CPU Virtualization



9/10/24 Mengwei Xu @ BUPT Fall 2024 18

Code Example: CPU Virtualization



9/10/24 Mengwei Xu @ BUPT Fall 2024 19

Code Example: Memory Virtualization



9/10/24 Mengwei Xu @ BUPT Fall 2024 20

Code Example: Memory Virtualization



9/10/24 Mengwei Xu @ BUPT Fall 2024 21

Code Example: Memory Virtualization

Why not 1,2,3,4..?



9/10/24 Mengwei Xu @ BUPT Fall 2024 22

• Managing hardware resources
• Allocating resources to concurrent tasks, who gets more?
• Determining hardware status: CPU frequency, I/O device on/off, etc.

• Facilitate app developers
• Illusion of resources not physically present

• Large memory size
• Isolation of apps

• so a bug does not cause the machine down
• Cross-apps communication

• Without

• Facilitate users
• UI components and rendering

The Goal of OS



9/10/24 Mengwei Xu @ BUPT Fall 2024 23

• Android/TensorFlow/WeChat
• OS vs. kernel (内核)

The OS concept is expanding

(The focus of
this course)



9/10/24 Mengwei Xu @ BUPT Fall 2024 24

• Android/TensorFlow/WeChat
• OS vs. kernel (内核)

The OS concept is expanding

(The focus of
this course)

Software

Applications System Software

System Libraries Operating
System

Shells, GUI.. Kernel



9/10/24 Mengwei Xu @ BUPT Fall 2024 25

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 26

• OS is a fundamental piece of computer science.
• It’s everywhere and will be long-standing.
• It extensively adopts the most important concepts in CS.
• It extensively interacts with hardware, compiler, PLs, runtime, etc.

Why Study OS? (1/3)



9/10/24 Mengwei Xu @ BUPT Fall 2024 27

• OS is useful
• Whatever you work at correlates to OS

- HPC, mobile/edge/cloud computing, ML/AI, security, etc..
• Helps you understand why your program does not work well
• Helps you to get a good job

Why Study OS? (2/3)

Charles E Leiserson, Neil C Thompson, Joel S Emer, Bradley C Kuszmaul, ButlerW Lampson, Daniel Sanchez, and Tao B Schardl. There’s plenty of room at the top: What will drive 
computer performance after moore’s law? Science, 368(6495), 2020. 



9/10/24 Mengwei Xu @ BUPT Fall 2024 28

• OS is cool
• Probably the most complex software you will deal with
• The critical path to understand how computer really works

Why Study OS? (3/3)



9/10/24 Mengwei Xu @ BUPT Fall 2024 29

Why Study OS? – especially as AI students

From ChatGPT
From LLaMA-70B



9/10/24 Mengwei Xu @ BUPT Fall 2024 30

• Academia: USENIX/ACM/IEEE
• Conferences: SOSP/OSDI/USENIX ATC/EuroSys/ApSys..

• Companies
• (direct) Microsoft, Google,Apple, Huawei..
• (indirect) NVIDIA, Intel, Meta,Alibaba..
• Hardware and OS always co-evolve!

• Developers who benefit from OS knowledge: everyone!

Who Cares OS?



9/10/24 Mengwei Xu @ BUPT Fall 2024 31

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 32

• Complexity
• Windows 10 has roughly 10,000,000 lines of code.

• OS directly deals with hardware
• OS crash means…

• OS manages concurrency (并发)
• A major source of software bugs

• OS cares many metrics
• Reliability, availability, performance, energy, etc…

• Gap between concepts and code
• There are historical baggage

Challenges



9/10/24 Mengwei Xu @ BUPT Fall 2024 33

• Think more and ask why
• What’s the benefit? What if.. ?

• Be interactive
• In and after course

• Be patient
• Too many abstractions and indirections

• Get your hands dirty

How to Overcome?



9/10/24 Mengwei Xu @ BUPT Fall 2024 34

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 35

OS history

Serial Processing
(1940s-1950s)

Batch Processing
(1950s-1960s)

Multiprogramming
(1960s-1970s)

Time Sharing
(1970s-?)

• Serial Processing (串⾏)
- No OS, users directly interact with machines
- Output displayed by lights

• No scheduling (调度)
• Huge setup time



9/10/24 Mengwei Xu @ BUPT Fall 2024 36

OS history

Serial Processing
(1940s-1950s)

Batch Processing
(1950s-1960s)

Multiprogramming
(1960s-1970s)

Time Sharing
(1970s-?)

• Simple Batch Systems (简单批处理)
- A ”monitor” that batches jobs together
and controls the programs running

- Program branches back to monitor when
finished

- (part of) Monitor always in memory
- Maximizes the machine utilization

• Simple, coarse-grained scheduling
• Uniprogramming



9/10/24 Mengwei Xu @ BUPT Fall 2024 37

OS history

Serial Processing
(1940s-1950s)

Batch Processing
(1950s-1960s)

Multiprogramming
(1960s-1970s)

Time Sharing
(1970s-?)

• Multiprogrammed Batch Systems (多道批处理)
- Processor can switch among different jobs
when they are running (waiting for I/O)

- Memory management, scheduling, save and
restore

- Optimized for job throughput (vs. speed)

• Not enough for user interactions



9/10/24 Mengwei Xu @ BUPT Fall 2024 38

OS history

Serial Processing
(1940s-1950s)

Batch Processing
(1950s-1960s)

Multiprogramming
(1960s-1970s)

Time Sharing
(1970s-?)

• Time Sharing Systems (分时系统)
- A logical extension of multiprogrammed
systems

- Users/processes allocated with computer
resources (time slots)

- Designed for faster response time

• It consumes many resources



9/10/24 Mengwei Xu @ BUPT Fall 2024 39

• Real-time OS (实时操作系统)
• vs. General-purpose OS (通⽤操作系统)
• Used in robots, satellites, airplanes, etc..

• Distributed OS (分布式操作系统)
• Could be atop traditional OS
• C/S, P2P

• Microkernel
• vs. Monolithic kernels
• Small size: moving drivers, filesystems, etc to user space
• Securer, but slower
• Many OSes are hybrid (Mac OS)

Other OS types



9/10/24 Mengwei Xu @ BUPT Fall 2024 40

• Adapting to new hardware
• Multi-core CPU, GPU, NPU, NVM, RDMA..

• Adapting to new workloads
• Machine learning serving/training, distributed programs,AR/VR..

• Adapting to new user demands
• Faster, more responsive, lower power..

• Hardware is cheaper, yet humans are more expensive

Summary of OS Evolution



9/10/24 Mengwei Xu @ BUPT Fall 2024 41

•分久必合，合久必分

Summary of OS Evolution

Centralized Decentralized Centralized Decentralized



9/10/24 Mengwei Xu @ BUPT Fall 2024 42

• About this course
•What is OS?
•Why learn OS?
• Challenges and how to overcome?
• Brief history of OS

•Warmups
• Computer organization
• CPU, ISA, assembly, etc
• Lifetime of a “Hello World” program

Goals for Today



9/10/24 Mengwei Xu @ BUPT Fall 2024 43

• CPU, Memory, Disk, Input devices, Output devices
• This is a very rough understanding

Computer Components



9/10/24 Mengwei Xu @ BUPT Fall 2024 44

• Direct Memory Access (DMA，直接存储器访问)
• CPU directly accesses data in cache and memory, but not disk.

Computer Architecture



9/10/24 Mengwei Xu @ BUPT Fall 2024 45

• ALU operates on registers
• CU loads/saves data from/to memory

CPU

Arithmetic Logic
Unit (ALU,逻辑
运算单元)

Controll Unit
(CU,控制单元)

Registers (寄存器)

Cache (缓存)

Memory (内存)



9/10/24 Mengwei Xu @ BUPT Fall 2024 46

• In x86-64 CPUs, there are 16 64-bit general-purpose registers and
many other special purpose registers

CPU

• Instruction pointer (EIP/IP)
• Status register (RFLAGS)
• Segment registers (CS, SS, DS, ES, FS, GS)
• Control registers (CR0-CR15)

• Last bit of CR0 indicates if CPU is in
protected mode or real mode

• 31st bit of CR0 indicates if paging is enabled
• CR2 indicates the page fault address

• SIMD and FP registers (AVX..)
• Etc..

• Those special registers determine how CPU
operates



9/10/24 Mengwei Xu @ BUPT Fall 2024 47

• An example of “a=1+2”
• Von Neumann architecture (冯诺依曼架构)
• Program Counter (PC,程序计数器)

• Also known as instruction pointer (IP)
• Assembly code (汇编程序)

CPU

0xf0c
0xf08
0xf04
0xf00

…
…

0x108
0x104
0x100

…
save R2 -> 0x108
add R0 R1 -> R2
load 0x104 -> R1
load 0x100 -> R0

…
…
a
2
1

…

… …

Address Content

Memory

Code
region

Data
region



9/10/24 Mengwei Xu @ BUPT Fall 2024 48

• An example of “a=1+2”
• Von Neumann architecture (冯诺依曼架构)
• Program Counter (PC,程序计数器)

• Also known as instruction pointer (IP)
• Assembly code (汇编程序)

• How CPU understands (decodes) instructions?
• Opcode (操作码), Operands (操作数)
• Instruction Set Architecture (ISA,指令集架构)

• How many you know?

CPU
http://ref.x86asm.net/coder32.html

Opcode Operands/Address

add R0 R1 R2



9/10/24 Mengwei Xu @ BUPT Fall 2024 49

• Internally, it’s about circuit and very complex

CPU



9/10/24 Mengwei Xu @ BUPT Fall 2024 50

• Internally, it’s about circuit and very complex

CPU



9/10/24 Mengwei Xu @ BUPT Fall 2024 51

1. Coded with PL and IDE
• By developers

2. Compiled to assembly
• By compilers like GCC/G++/LLVM

3. Linked to other libs
• By linkers like ld

4. Loaded to memory
• By OS
• Allocated with memory at right position

5. Executed
• By OS
• See previous slide

6. Terminated
• By OS with return command
• Memory released

Lifetime of Hello World



9/10/24 Mengwei Xu @ BUPT Fall 2024 52

1. Coded with PL and IDE
• By developers

2. Compiled to assembly
• By compilers like GCC/G++/LLVM

3. Linked to other libs
• By linkers like ld

4. Loaded to memory
• By OS
• Allocated with memory at right position

5. Executed
• By OS
• See previous slide

6. Terminated
• By OS with return command
• Memory released

Lifetime of Hello World



9/10/24 Mengwei Xu @ BUPT Fall 2024 53

1. Coded with PL and IDE
• By developers

2. Compiled to assembly
• By compilers like GCC/G++/LLVM

3. Linked to other libs
• By linkers like ld

4. Loaded to memory
• By OS
• Allocated with memory at right position

5. Executed
• By OS
• See previous slide

6. Terminated
• By OS with return command
• Memory released

Lifetime of Hello World



9/10/24 Mengwei Xu @ BUPT Fall 2024 54

1. Coded with PL and IDE
• By developers

2. Compiled to assembly
• By compilers like GCC/G++/LLVM

3. Linked to other libs
• By linkers like ld

4. Loaded to memory
• By OS
• Allocated with memory at right position

5. Executed
• By OS
• See previous slide

6. Terminated
• By OS with return command
• Memory released

Lifetime of Hello World



9/10/24 Mengwei Xu @ BUPT Fall 2024 55

Linux Command-Line Interfaces



9/10/24 Mengwei Xu @ BUPT Fall 2024 56

• CLI vs GUI (graphical user interface)

Linux Command-Line Interfaces



9/10/24 Mengwei Xu @ BUPT Fall 2024 57

• Can large language models (LLMs) help?

Linux Command-Line Interfaces



9/10/24 Mengwei Xu @ BUPT Fall 2024 58

Calling Conventions

1. void func_A() {
2. int a = 1 + 2;
3. int c = func_B(a);
4. print(c);
5. }

1. void func_B(int x) {
2. int y = x + 3;
3. return y;
4. }

• How does func_A goes to func_B?
• How does func_B return correctly back to func_A?

Search for “calling conventions” and try to understand what
happens at assembly/instruction level

stack



9/10/24 Mengwei Xu @ BUPT Fall 2024 59

• Many OS features need architecture support
• Byte, bit, word
• C/C++ pointers

Misc



9/10/24 Mengwei Xu @ BUPT Fall 2024 60

• The first homework – using large language models (LLMs) to build a
command line tool helper
oDDL: two weeks before the last course
o Local LLMs (LLaMA 2) or remote (ChatGPT or⽂⼼⼀⾔), you chose
oAdd if-else if needed
oChinese support is cool and useful!
oTest with a clean environment (VM, docker) so it won’t mess up your computers

• Submission: code + detailed documents + testing results
oThe best ones will be demonstrated in the last course
oDon’t copy from other projects!

Homework


